ServiceTaskCoder: Building an Al-powered Chatbot
for ServiceTask with Multi-Granular Instruction
Tuning and Al-Guided Feedback

TU

Grazm

Vedad Misirlic*, Kevin Innerebner*, Gerald Stieglbauer, Elisabeth Lex

Abstract

Large Language Models (LLMs) have significantly advanced
automatic code generation for popular general-purpose programming
languages. However, their performance degrades on low-resource
and ‘proprietary’ Domain Specific Languages (DSLs) such as
Servicelask due to scarce training data publicly available. We
propose a fully automated pipeline to adapt coding LLMs with
parameter-efficient Q-LoRA to Servicelask, AVL's programming
language. Our method consists of two stages: (1) we synthesize
multi-grained instructions directly from raw code files by generating
code-comment pairs. These instructions are used for Supervised

~ine-Tuning (SFT); (2) we perform Reinforcement Learning with Al

-eedback (RLAIF), where a commenting LLM produces entirely new,
synthetic instructions, and our SFT model samples two outputs. A
judging LLM selects a preference, and we subsequently optimize the
model with Direct Preference Optimization (DPQO). Results show that
our method highly improves the quality of the code generated, and
that the Chatbot improved syntactic and semantic understanding of
the programming language.

° ' Comment
Two-stage Fine-tuning N
Pipeline |
Raw Source Generate Line Co;no r:;e::ed
Code Comments Code
|
ﬁupervised Fine-tuning ‘ \
Instruction
Code Pairs
\ /Direct Preference Optimization \
Baseline Supervised SFT-tuned Generate Instgllut:::)ons
LLM Fine-tuning LLM Outputs
DPO
DPO Training aE— Training] Rate Outputs
Data
Prometheus
Judging
LLM /
Methodology

» Chat-based LLM based on Qwen2.5-7B-Coder-Instruct [1]
* Two-stage training process:

1. Supervised Fine-tuning (SFT)
= Generate comments for code blocks
= Create instructions with comments and original Service Task code
= Apply supervised fine-tuning using Q-LoRA
2. Direct Preference Optimization (DPO) with Reinforcement
Learning with Al Feedback (RLAIF)
= Create new ServiceTask instructions with SFT model
= Qutput candidate pairs

= Prometheus v2 [2] judging LLM evaluates outputs based on grading
rubrics

= DPO with Prometheus choices applied to create the final model

OW Can we pesl adapt coding VIS 10 Service

with lightweight fine-tuning approaches where training

material is limited?

*These two authors contributed equally

Grading Description of Rubric

Rubrics [2]

Correct Is the code that is generated correct,
and does it work?

Formatted Is the code that is generated well-
formatted, concise, and readable?

Naming Are the functions, methods, and
variable names understandable and
indicative?

Instruction- Does the outputted code follow the

Following original prompt which was defined?

Humble Does the model’s response avoid self-

praise and apply self-critique?
Experiments
 Code Comment Quality

- Judging LLMs evaluate the code comments on a 1-7 Likert scale

« DPO and Grading Rubrics Positional Bias

» Positional bias investigation through choices swapping in grading rubrics prompt

 Proprietary Language Evaluation via Instruction-Based Code

Generation
« Parsing success
« Compiler warnings
* chrF++ [3] similarity metric
* Proprietary Language Evaluation with LLM-as-a-judge
* Judging LLMs evaluate code quality of proprietary language

 Conventional Code Benchmarks
 HumankEval [4]

* HumankEval+ [5]

» Multipl-E [6]

Results
* Significant increase in output quality in Service Task

* Approach highly effective in scenarios where few code examples and no
tests are available for training

 No increase in code quality in high-resource programming languages
such as Python

Conclusion

 We present a lightweight solution applying a two-stage pipeline: (1)
Supervised fine-tuning through Instruction-code pairs, and (2) RLAIF and
DPO for the final step

« Efficient approach where data or computing power is limited

Sources

[1] Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L., ... & Lin, J. (2024). QwenZ2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

[2] Kim, S., Suk, J., Longpre, S., Lin, B. Y., Shin, J., Welleck, S., ... & Seo, M. (2024).
Prometheus 2: An open source language model specialized in evaluating other language
models. arXiv preprint arXiv:2405.01535.

[3] Popovic, M. (2017, September). chrF++: words helping character n-grams. In Proceedings
of the second conference on machine translation (pp. 612-618).

[4] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., ... & Zaremba, W.
(2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.

[5] Liu, J., Xia, C. S., Wang, Y., & Zhang, L. (2023). Is your code generated by chatgpt really
correct? rigorous evaluation of large language models for code generation. Advances in
Neural Information Processing Systems, 36, 21558-21572.

[6] Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-Costin, L., Pinckney, D., ... &
Jangda, A. (2023). Multipl-e: A scalable and polyglot approach to benchmarking neural code
generation. IEEE Transactions on Software Engineering, 49(7), 3675-3691.

BHCC

Institute of
HUMAN-CENTRED COMPUTING

TU Graz - Institute of Human-Centred Computing

Sandgasse 36/1ll, 8010 Graz, Austria, Tel.: +43 316 873-5624
office.hcc@tugraz.at, https://hcc.tugraz.at/

	Slide 1: ServiceTaskCoder: Building an AI-powered Chatbot for ServiceTask with Multi-Granular Instruction Tuning and AI-Guided Feedback

