
TU Graz – Institute of Human-Centred Computing

Sandgasse 36/III, 8010 Graz, Austria, Tel.: +43 316 873-5624

office.hcc@tugraz.at, https://hcc.tugraz.at/

Building Coding LLMs for Low, Mid-Resource and

Proprietary Languages with Multi-Granular

Instruction Tuning and AI-Guided Feedback

https://aisocietylab.github.io/

Vedad Misirlic*, Kevin Innerebner*, Gerald Stieglbauer, Elisabeth Lex

Abstract

Large Language Models (LLMs) have significantly advanced

automatic code generation for popular general-purpose programming

languages. However, their performance degrades on low-resource

and ‘proprietary’ Domain Specific Languages (DSLs) due to scarce

training data. We propose a fully automated pipeline to adapt coding

LLMs with parameter-efficient Q-LoRA to ‘proprietary’, low-resource

languages. Our method consists of two stages: (1) we synthesize

multi-grained instructions directly from raw code by generating code-

comment pairs. These instructions are used for Supervised Fine-

Tuning (SFT); (2) we perform Reinforcement Learning with AI

Feedback (RLAIF), where a commenting LLM produces entirely new,

synthetic instructions, and our SFT model samples two outputs. A

judging LLM selects a preference, and we subsequently optimize the

model with Direct Preference Optimization (DPO). Results show that

our approach improves instruction-following and code quality across

languages, demonstrating strong generalization even with limited

data and no execution infrastructure at hand.

Experiments

• Code Comment Quality

• Judging LLMs evaluate the code comments on a 1-7 Likert scale

• DPO and Grading Rubrics Positional Bias

• Positional bias investigation through choices swapping in grading rubrics prompt

• Proprietary Language Evaluation via Instruction-Based Code

Generation

• Parsing success

• Compiler warnings

• chrF++ [3] similarity metric

• Proprietary Language Evaluation with LLM-as-a-judge

• Judging LLMs evaluate code quality of proprietary language

• Conventional Code Benchmarks

• HumanEval [4]

• HumanEval+ [5]

• Multipl-E [6]

Methodology

• Chat-based LLM based on Qwen2.5-7B-Coder-Instruct [1]

• Two-stage training process:

1. Supervised Fine-tuning (SFT)

▪ Generate comments for code blocks

▪ Create instructions with comments and original code

▪ Apply supervised fine-tuning using Q-LoRA

2. Direct Preference Optimization (DPO) with Reinforcement

Learning with AI Feedback (RLAIF)

▪ Create new instructions with SFT model

▪ Output candidate pairs

▪ Prometheus v2 [2] judging LLM evaluates outputs based on grading

rubrics

▪ DPO with Prometheus choices applied to create the final model

Grading

Rubrics [2]

Description of Rubric

Correct Is the code that is generated correct,

and does it work?

Formatted Is the code that is generated well-

formatted, concise, and readable?

Naming Are the functions, methods, and

variable names understandable and

indicative?

Instruction-

Following

Does the outputted code follow the

original prompt which was defined?

Humble Does the model’s response avoid self-

praise and apply self-critique?

Results

• Significant increase in output quality in low-resource, mid-resource,

and proprietary programming language settings

• Approach highly effective in scenarios where few code examples are

available for training

• No increase in code quality in high-resource programming languages

such as Python

Conclusion

• We present a lightweight solution applying a two-stage pipeline: (1)

Supervised fine-tuning through Instruction-code pairs, and (2) RLAIF and

DPO for the final step

• Efficient approach where data or computing power is limited

Sources
[1] Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L., ... & Lin, J. (2024). Qwen2. 5-coder

technical report. arXiv preprint arXiv:2409.12186.

[2] Kim, S., Suk, J., Longpre, S., Lin, B. Y., Shin, J., Welleck, S., ... & Seo, M. (2024).

Prometheus 2: An open source language model specialized in evaluating other language

models. arXiv preprint arXiv:2405.01535.

[3] Popović, M. (2017, September). chrF++: words helping character n-grams. In Proceedings

of the second conference on machine translation (pp. 612-618).

[4] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., ... & Zaremba, W.

(2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.

[5] Liu, J., Xia, C. S., Wang, Y., & Zhang, L. (2023). Is your code generated by chatgpt really

correct? rigorous evaluation of large language models for code generation. Advances in

Neural Information Processing Systems, 36, 21558-21572.

[6] Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-Costin, L., Pinckney, D., ... &

Jangda, A. (2023). Multipl-e: A scalable and polyglot approach to benchmarking neural code

generation. IEEE Transactions on Software Engineering, 49(7), 3675-3691.
*These two authors contributed equally

How can we best adapt coding LLMs to low-resource,

proprietary programming languages with lightweight

fine-tuning approaches?

	Slide 1: Building Coding LLMs for Low, Mid-Resource and Proprietary Languages with Multi-Granular Instruction Tuning and AI-Guided Feedback

