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Abstract

Large Language Models (LLMs) have significantly advanced
automatic code generation for popular general-purpose programming
languages. However, their performance degrades on low-resource
and ‘proprietary’ Domain Specific Languages (DSLs) due to scarce
training data. We propose a fully automated pipeline to adapt coding
LLMs with parameter-efficient Q-LoRA to ‘proprietary’, low-resource
languages. Our method consists of two stages: (1) we synthesize
multi-grained instructions directly from raw code by generating code-
comment pairs. These instructions are used for Supervised Fine-
Tuning (SFT); (2) we perform Reinforcement Learning with Al
Feedback (RLAIF), where a commenting LLM produces entirely new,
synthetic instructions, and our SFT model samples two outputs. A
judging LLM selects a preference, and we subsequently optimize the
model with Direct Preference Optimization (DPQO). Results show that
our approach improves instruction-following and code quality across
languages, demonstrating strong generalization even with limited
data and no execution infrastructure at hand.
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» Chat-based LLM based on Qwen2.5-7B-Coder-Instruct [1]
* Two-stage training process:

1. Supervised Fine-tuning (SFT)
= Generate comments for code blocks
= Create instructions with comments and original code
= Apply supervised fine-tuning using Q-LoRA
2. Direct Preference Optimization (DPO) with Reinforcement
Learning with Al Feedback (RLAIF)
= (Create new instructions with SFT model
= Qutput candidate pairs

= Prometheus v2 [2] judging LLM evaluates outputs based on grading
rubrics

= DPO with Prometheus choices applied to create the final model
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proprietary programming languages with lightweight

fine-tuning approaches?

*These two authors contributed equally

Grading Description of Rubric

Rubrics [2]

Correct Is the code that is generated correct,
and does it work?

Formatted Is the code that is generated well-
formatted, concise, and readable?

Naming Are the functions, methods, and
variable names understandable and
indicative?

Instruction- Does the outputted code follow the

Following original prompt which was defined?

Humble Does the model’s response avoid self-

praise and apply self-critique?
Experiments
 Code Comment Quality

- Judging LLMs evaluate the code comments on a 1-7 Likert scale

« DPO and Grading Rubrics Positional Bias

» Positional bias investigation through choices swapping in grading rubrics prompt

 Proprietary Language Evaluation via Instruction-Based Code
Generation

« Parsing success
«  Compiler warnings
* chrF++ [3] similarity metric
* Proprietary Language Evaluation with LLM-as-a-judge
* Judging LLMs evaluate code quality of proprietary language

 Conventional Code Benchmarks
 HumankEval [4]

* HumankEval+ [5]

»  Multipl-E [6]

Results

« Significant increase in output quality in low-resource, mid-resource,
and proprietary programming language settings

« Approach highly effective in scenarios where few code examples are
available for training

 No increase in code quality in high-resource programming languages
such as Python

Conclusion

 We present a lightweight solution applying a two-stage pipeline: (1)
Supervised fine-tuning through Instruction-code pairs, and (2) RLAIF and
DPO for the final step

« Efficient approach where data or computing power is limited
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