Building Coding LLMs for Low, Mid-Resource and

TU

Grazm

Proprietary Languages with Multi-Granular
Instruction Tuning and Al-Guided Feedback

Vedad Misirlic*, Kevin Innerebner*, Gerald Stieglbauer, Elisabeth Lex

Abstract

Large Language Models (LLMs) have significantly advanced
automatic code generation for popular general-purpose programming
languages. However, their performance degrades on low-resource
and ‘proprietary’ Domain Specific Languages (DSLs) due to scarce
training data. We propose a fully automated pipeline to adapt coding
LLMs with parameter-efficient Q-LoRA to ‘proprietary’, low-resource
languages. Our method consists of two stages: (1) we synthesize
multi-grained instructions directly from raw code by generating code-
comment pairs. These instructions are used for Supervised Fine-
Tuning (SFT); (2) we perform Reinforcement Learning with Al
Feedback (RLAIF), where a commenting LLM produces entirely new,
synthetic instructions, and our SFT model samples two outputs. A
judging LLM selects a preference, and we subsequently optimize the
model with Direct Preference Optimization (DPQO). Results show that
our approach improves instruction-following and code quality across
languages, demonstrating strong generalization even with limited
data and no execution infrastructure at hand.

° ' Comment
Two-stage Fine-tuning N
Pipeline
Raw Source Generate Line Co;no r:;a::ed
Code Comments Code
|
ﬁupervised Fine-tuning ‘ \
Instruction
Code Pairs
\ /Direct Preference Optimization \
Baseline Supervised SFT-tuned Generate Installljtc‘:::)ons
LLM Fine-tuning LLM Outputs
DPO
DPO Training aE— Training] Rate Outputs

Data

|

Prometheus

Judging
LLM /

Methodology

» Chat-based LLM based on Qwen2.5-7B-Coder-Instruct [1]
* Two-stage training process:

1. Supervised Fine-tuning (SFT)
= Generate comments for code blocks
= Create instructions with comments and original code
= Apply supervised fine-tuning using Q-LoRA
2. Direct Preference Optimization (DPO) with Reinforcement
Learning with Al Feedback (RLAIF)
= (Create new instructions with SFT model
= Qutput candidate pairs

= Prometheus v2 [2] judging LLM evaluates outputs based on grading
rubrics

= DPO with Prometheus choices applied to create the final model

WA'A' C VvV O T aAuUudiu J U v \/ U W VV =1 C J U —

proprietary programming languages with lightweight

fine-tuning approaches?

*These two authors contributed equally

Grading Description of Rubric

Rubrics [2]

Correct Is the code that is generated correct,
and does it work?

Formatted Is the code that is generated well-
formatted, concise, and readable?

Naming Are the functions, methods, and
variable names understandable and
indicative?

Instruction- Does the outputted code follow the

Following original prompt which was defined?

Humble Does the model’s response avoid self-

praise and apply self-critique?
Experiments
 Code Comment Quality

- Judging LLMs evaluate the code comments on a 1-7 Likert scale

« DPO and Grading Rubrics Positional Bias

» Positional bias investigation through choices swapping in grading rubrics prompt

 Proprietary Language Evaluation via Instruction-Based Code
Generation

« Parsing success
« Compiler warnings
* chrF++ [3] similarity metric
* Proprietary Language Evaluation with LLM-as-a-judge
* Judging LLMs evaluate code quality of proprietary language

 Conventional Code Benchmarks
 HumankEval [4]

* HumankEval+ [5]

» Multipl-E [6]

Results

« Significant increase in output quality in low-resource, mid-resource,
and proprietary programming language settings

« Approach highly effective in scenarios where few code examples are
available for training

 No increase in code quality in high-resource programming languages
such as Python

Conclusion

 We present a lightweight solution applying a two-stage pipeline: (1)
Supervised fine-tuning through Instruction-code pairs, and (2) RLAIF and
DPO for the final step

« Efficient approach where data or computing power is limited

Sources

[1] Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L., ... & Lin, J. (2024). QwenZ2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

[2] Kim, S., Suk, J., Longpre, S., Lin, B. Y., Shin, J., Welleck, S., ... & Seo, M. (2024).
Prometheus 2: An open source language model specialized in evaluating other language
models. arXiv preprint arXiv:2405.01535.

[3] Popovic, M. (2017, September). chrF++: words helping character n-grams. In Proceedings
of the second conference on machine translation (pp. 612-618).

[4] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., ... & Zaremba, W.
(2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.

[5] Liu, J., Xia, C. S., Wang, Y., & Zhang, L. (2023). Is your code generated by chatgpt really
correct? rigorous evaluation of large language models for code generation. Advances in
Neural Information Processing Systems, 36, 21558-21572.

[6] Cassano, F., Gouwar, J., Nguyen, D., Nguyen, S., Phipps-Costin, L., Pinckney, D., ... &
Jangda, A. (2023). Multipl-e: A scalable and polyglot approach to benchmarking neural code
generation. IEEE Transactions on Software Engineering, 49(7), 3675-3691.

office.hcc@tugraz.at, https://hcc.tugraz.at/

TU Graz - Institute of Human-Centred Computing ‘ ’
%Yb r| d AH R Sandgasse 36/Ill, 8010 Graz, Austria, Tel.: +43 316 873-5624 H

Cluster of Excellence

Institute of
HUMAN-CENTRED COMPUTING

	Slide 1: Building Coding LLMs for Low, Mid-Resource and Proprietary Languages with Multi-Granular Instruction Tuning and AI-Guided Feedback

