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Abstract

Large Language Models (LLMs) have significantly advanced

automatic code generation for popular general-purpose programming

languages. However, their performance degrades on low-resource

and ‘proprietary’ Domain Specific Languages (DSLs) due to scarce

training data. We propose a fully automated pipeline to adapt coding

LLMs with parameter-efficient Q-LoRA to ‘proprietary’, low-resource

languages. Our method consists of two stages: (1) we synthesize

multi-grained instructions directly from raw code by generating code-

comment pairs. These instructions are used for Supervised Fine-

Tuning (SFT); (2) we perform Reinforcement Learning with AI

Feedback (RLAIF), where a commenting LLM produces entirely new,

synthetic instructions, and our SFT model samples two outputs. A

judging LLM selects a preference, and we subsequently optimize the

model with Direct Preference Optimization (DPO). Results show that

our approach improves instruction-following and code quality across

languages, demonstrating strong generalization even with limited

data and no execution infrastructure at hand.

Experiments

• Code Comment Quality

• Judging LLMs evaluate the code comments on a 1-7 Likert scale

• DPO and Grading Rubrics Positional Bias

• Positional bias investigation through choices swapping in grading rubrics prompt

• Proprietary Language Evaluation via Instruction-Based Code

Generation

• Parsing success

• Compiler warnings

• chrF++ [3] similarity metric

• Proprietary Language Evaluation with LLM-as-a-judge

• Judging LLMs evaluate code quality of proprietary language

• Conventional Code Benchmarks

• HumanEval [4]

• HumanEval+ [5]

• Multipl-E [6]

Methodology

• Chat-based LLM based on Qwen2.5-7B-Coder-Instruct [1]

• Two-stage training process:

1. Supervised Fine-tuning (SFT)

▪ Generate comments for code blocks

▪ Create instructions with comments and original code

▪ Apply supervised fine-tuning using Q-LoRA

2. Direct Preference Optimization (DPO) with Reinforcement

Learning with AI Feedback (RLAIF)

▪ Create new instructions with SFT model

▪ Output candidate pairs

▪ Prometheus v2 [2] judging LLM evaluates outputs based on grading 

rubrics

▪ DPO with Prometheus choices applied to create the final model

Grading 

Rubrics [2]

Description of Rubric

Correct Is the code that is generated correct, 

and does it work?

Formatted Is the code that is generated well-

formatted, concise, and readable?

Naming Are the functions, methods, and 

variable names understandable and 

indicative?

Instruction-

Following

Does the outputted code follow the 

original prompt which was defined?

Humble Does the model’s response avoid self-

praise and apply self-critique?

Results

• Significant increase in output quality in low-resource, mid-resource,

and proprietary programming language settings

• Approach highly effective in scenarios where few code examples are

available for training

• No increase in code quality in high-resource programming languages

such as Python

Conclusion

• We present a lightweight solution applying a two-stage pipeline: (1)

Supervised fine-tuning through Instruction-code pairs, and (2) RLAIF and

DPO for the final step

• Efficient approach where data or computing power is limited
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How can we best adapt coding LLMs to low-resource, 

proprietary programming languages with lightweight  

fine-tuning approaches?
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